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ABSTRACT

Transit Signal Priority (TSP) is an operational strategy that is capable of enhancing traditional transit
services by facilitating transit vehicle movements in the prioritized direction. A wide variety of
different TSP strategies have been proposed; however, the majority of TSP applications use a Red
Truncation (RT) and/or a Green Extension (GE) strategy. A considerable amount of research has

been directed to evaluate TSP operational capabilities for various traffic and control conditions.

The results of this research suggest that there is widespread agreement among practitioners and
researchers that GE is superior to RT as a TSP strategy when evaluated on the basis of delay impacts.
The inferiority of the RT strategy appears to be a result of inefficiencies in the recovery algorithm.
This paper examines the performance of the RT TSP strategy for different cycle recovery algorithms.
The results suggest that the typical practice of implementing RT with out giving compensation to the
non prioritized approach considerably undermines the potential benefits of RT. Consequently, an

alternative cycle recovery algorithm is proposed and evaluated.

The findings suggest that the magnitude of cross street vehicular delay is greatly influenced by the
cycle recovery algorithm. Even a relatively naive compensating cycle recovery algorithm was able to
achieve on average a 93% reduction in cross street vehicle delays as compared to a no compensation
RT cycle recovery algorithm. Moreover, the strategic use of RT with compensation substantially

reduces the existing deficit in the performance of RT TSP as compared to GE.
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INTRODUCTION

Transit Signal Priority (TSP) is an operational strategy that is capable of enhancing traditional transit
services by facilitating transit vehicle movement in the prioritized direction and reducing the mean
and variance of transit vehicle delay. TSP can be implemented by either a passive or active mode.
Passive TSP consists of implementing a signal timing plan that favours the prioritized approach (i.e.
by increasing the green interval duration for the prioritized approach or by designing coordination on
the basis of bus travel times). Active TSP consists of altering signal timings in real time when
individual buses are detected to arrive on the prioritized approach. A range of active TSP strategies
have been developed and implemented, including bus activated exclusive phases, phase skipping and
phase rotation, but the most commonly used strategies for buses operating in mixed flow are: Red
Truncation (RT) (also called “Early Green” and “Extended green upon call”’) and/or Green Extension
(GE) (1). We refer in this paper to these two strategies individually as Red Truncation and Green

Extension, and collectively as the 2E’s strategies.

As illustrated in Figure 1, RT consists of giving advance green to the prioritized approach by
terminating the competing (non prioritized approach) green earlier than normal. GE consists of
extending the green time on the prioritized approach beyond its normal termination time to permit a
bus on the prioritized approach to clear the intersection. The 2E’s strategies result in the temporary
re-allocation of green time from the non-prioritized approach to the prioritized approach in order to
facilitate the movement of the transit vehicle through the intersection. Typically the non-prioritized
approach is not compensated in subsequent cycles for this lost green time (2, 3).

Though 2E’s are the most commonly used active TSP strategies, evaluation studies published in the
literature appear to suggest that GE is superior to RT in terms of the resulting impact on transit
vehicle delay (2). In this paper we (i) Demonstrate that the poor performance of RT relative to GE
primarily is caused by the cycle recovery algorithms used; (ii) Propose an alternative RT cycle

recovery algorithm; and (iii) Evaluate its performance using simulation.

The remaining sections of this paper address the following topics: (i) Relevant findings from
previous research; (ii) The proposed cycle recovery algorithm; (iii) Evaluation methodology; (iv)

Findings and conclusions.
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LITERATURE REVIEW

The impact of granting signal priority does not always end when the vehicle for which priority is
granted, passes through the intersection but may persist for several cycles. Traffic signal pre-
emption, which is often implemented for emergency vehicles only, typically causes more severe
disruptions to the signal timings than does transit signal priority. After a pre-emption call, a recovery
operation is required to transition back to normal signal operation. The pre-emption recovery
algorithm may compensate phases that were truncated or skipped during the event or adjust off sets
in order to restore coordination along the corridor (4). Given the severity of the impact that pre-
emption has on signal timings and corridor performance, and the complexity of developing and
implementing appropriate recovery algorithms, pre-emption is rarely used as a means of providing
priority for transit vehicles. Furthermore, compensating recovery algorithms appear to be rarely used

for transit signal priority applications.

There have been a large number of studies conducted to evaluate the impact of TSP on bus delays
and general purpose vehicles on the prioritized and non-prioritized approaches (2,5,6). These studies
have all indicated that GE is more effective than RT as a TSP strategy. The effectiveness of GE is in
not requiring additional clearance intervals and yet allowing transit vehicles to be served with
significant reduction in delay compared with RT strategy (6).

The TSP evaluation studies reported in the literature have modelled a Red Truncation strategy that
terminates the competing approach green time after satisfying minimum green time, amber, and all
red intervals of all the intermediate phases in the phase sequence (Figure 1). The green time on the
prioritized approach is extended till it coincides with its normal end point (2) implying that the cycle
recovery algorithm does not compensate the cross street for the reduced green interval. The only
consideration given to compensating the cross street has been in limiting the number of TSP calls for

either n number of cycles or for a specified duration after the TSP call has been granted (2,5).

Using this approach RT tends to result in a negative impact on the general traffic. For example Dion
et al (2) found that RT with a no compensation cycle recovery algorithm resulted in increased person

travel time and delays.

One cause for this negative net impact on travel time and delay is the disproportionately larger delay
caused to cross street traffic. When priority is requested, the cross street green interval is terminated

prematurely so as to provide green to the prioritized direction. This results in a reduction of the green
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time provided to the cross street, increasing the volume to capacity ratio for that cycle, and also

interrupts signal coordination on the both main and cross streets.

This issue is further aggravated at cross street locations operating at high volume to capacity ratios.
These cross streets have relatively little spare green time under normal conditions. Any reduction to
the green time due to a TSP priority call can cause over saturation. Skabardonis (7) identified this
situation as a condition under which TSP is likely to result in net disbenefits (i.e. an increase in
person delay). Consequently, Skabardonis proposed that TSP should be granted only if there is
sufficient spare green time in a signal cycle. This step ensures that signal priority does not result in
over saturated movements at the signalized intersection or loss of signal coordination. The spare

green time was computed as:

gspzzgi(l_xi) (1)
i=1
Where:

C = cycle length (seconds),
Osp = spare green time (seconds),

i = green time for phase i (seconds),
Nph = total number of phases in a cycle.
Xi = degree of saturation of the critical link in phase i. X, = /1‘9_ ,

Hic

Ai = average arrival rate for phase i (vehicles/second),
Ui = average service rate (saturation flow rate) for phase i (vehicles/second),

However there is no indication on the magnitude or percentage of gs, required before TSP is
warranted (i.e. before TSP is expected to provide net reductions in delay). Furthermore, in their
evaluations, Skabardonis et al., found that granting TSP based on spare green time produced
excessive queues on several side streets, and it appeared to discharge buses and other vehicles from
the front of one queue at the upstream intersection only to deliver them to the back of a queue at the
next downstream intersection. From these results it appears that this method is only helpful for
identifying locations at which the installation of TSP, operating with a non compensation recovery
algorithm, would not be beneficial. The method is not directly applicable to TSP strategies that
include a compensation cycle recovery algorithm and it does not identify locations at which TSP is

expected to be beneficial nor can it estimate the magnitude of the benefits.
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Sunkari et al. (8) presented a modelling approach, in which a simple evaluation model was developed
using the delay equation from the 1985 Highway Capacity Manual. However, according to Liu et al.
(3), this method was oversimplified and did not lead to practical applications. In a recent publication
Kevin et al. (9) developed and evaluated “intelligent bus priority” in which phase extension, phase
insertion, and early return strategies could be implemented without causing the controller to drop
from coordination. The results of simulation studies suggest that the proposed intelligent bus priority
could be used at moderate traffic levels (up to volume-to-capacity levels of 0.9 or less) without

significantly affecting cross street delays.

Several evaluation approaches are available by which to examine the impact of cycle recovery

algorithm on TSP performance, including;
e Field measurements
e Analytical expressions for quantifying delay
e Micro-simulation

There are several challenges with conducting an empirical study using field data, including
measuring intersection delays and observing a sufficiently broad range of conditions (i.e. v/c, bus
arrival times, and signal timings) while controlling for external factors such as weather and

geometry.

The use of analytical expressions is attractive as it provides an objective and verifiable means of
evaluating the impact of the recovery algorithms for a wide range of conditions. However, the
development of a closed form analytical expression usually requires simplifying assumptions about
the system (including distribution of vehicle arrivals) and these assumptions may limit the

applicability of the results to field conditions.

Micro-simulation models are able to represent a wide range of conditions that are encountered in the
field (e.g. signal timings, vehicle arrival patterns, intersection geometries, transit vehicle arrival
times, and TSP strategies). However, running the simulation model for a wide range of conditions is

typically resource intensive.

In this study, we have elected to use micro simulation to carry out the evaluation of the influence of

cycle recover algorithms on the performance of red truncation TSP.
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CYCLE RECOVERY ALGORITHMS

No Compensation Cycle Recovery Algorithm

The standard RT cycle recovery algorithm terminates the cross street green interval and does not
compensate the cross street green interval in subsequent cycles. Figure 2 shows the impact on cross
street delay of implementing RT with a no compensation recovery algorithm and assuming
deterministic arrivals and service times. Furthermore it is assumed that the approach is under
saturated when operating without TSP. The operation of the signal with no TSP is also shown. Once
the bus is detected on the prioritized street the controller terminates the cross street green interval
(ensuring minimum green time and other constraints are satisfied). Consequently, the green interval
for the prioritized approach begins earlier than it would have without TSP and extends the end point
of the green until it coincides with its normal point in the cycle. At high volume to capacity ratios,
the reduction in the cross street green interval duration may result in temporary over saturation (as
illustrated in Figure 2) that may take several signal cycles to dissipate. For the conditions assumed in
Figure 2, the cross street vehicle delay (i.e. area between the arrival and departure curves) is larger
with TSP than without TSP. The magnitude of the increase in delay for the cross street traffic is a
function of the amount by which the cross street green is shortened which is a function of the bus
arrival time (and signal constraints such as minimum cross street green time). The closer the bus is
detected towards the end of the cross street green interval the smaller is the impact of RT operational

strategy on the delay.

Proposed Compensation Cycle Recovery Algorithm

To overcome the potentially large penalty experienced by the cross street due to the no compensation
cycle recovery algorithm, we propose a recovery algorithm (named Compensation Cycle recovery
algorithm). The algorithm compensates the cross street approach for green interval time lost during
the cycle in which transit priority is granted, by providing additional time to the cross street green
interval in subsequent cycles. The operation of this algorithm is illustrated in Figure 3.

In this approach once a bus is detected on the main street the green time on the cross street is
terminated after satisfying the minimum green time and pedestrian walk times. The normal green
interval on the main street is served and upon completion the cross street green is started. This cross
street green interval is extended by an amount equal to that by which it had been reduced in the
earlier cycle. In this way the end of the cross street green interval coincides with its normal point in

the cycle. This recovery algorithm is expected to be more efficient for high volume to capacity ratios
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on the cross street when there is no or little spare green time available. Nevertheless, it can be
observed from Figure 3 that (for the conditions assumed), once again, cross street vehicle delay
resulting by TSP is greater than with no TSP. However, comparing Figure 2 and Figure 3 it can be
observed that the No compensation cycle recovery algorithm requires substantially more signal
cycles to dissipate the queue than does the compensating cycle recovery algorithm. Furthermore,
cross street vehicle delay resulting from the RT compensation TSP is smaller than from the No

Compensation cycle recovery algorithm.

Naturally, compensation of green to time back to the cross street results in higher delays for the
prioritized approach and therefore the evaluation of the performance of the cycle recovery algorithms

must consider impacts on both approaches.

SIMULATION EXPERIMENTS

The VISSIM microscopic traffic simulation model (10) was selected within this study to evaluate the
performance of two different red truncation cycle recovery algorithms. VISSIM performs traffic
simulations by tracking the movement of individual vehicles every 1/10™ of a second. The model is
composed of various sub-models, each of which defines the logic associated with a specific

behavioural attribute, such as car-following, lane selection, routing, vehicle generation, etc.

Model Calibration
Field saturation flow rate (SFR) data were collected over five days at two exclusive through lanes at
two signalized intersection approaches in the City of Waterloo, Ontario. The HCM methodology was

used to collect the field data and to estimate the corresponding SFR values. The average field SFR
(X ") was estimated to be 1773 pcphpl, and the Coefficient of Variation of SFR (CVf ), computed as

the standard deviation divided by the mean, was found to be 0.02.

There are several approaches that have been suggested in the literature by researchers and
practitioners to calibrate micro simulation models for various specific and general applications (11).
Most of the approaches have considered calibration of only a subset of parameters that can be
adjusted by the user. For example, the VISSIM model (10) has up to 36 parameters that control the
various driver behavioural sub models. The literature (12, 13) indicates that there are two
parameters namely; bx_add (Additive part of safety distance) and bx_mult (Multiplicative part of
safety distance) of the Weidemann car following model (14) that have a particularly important
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influence on the VISSIM model’s outputs. Consequently, these two parameters were calibrated as

part of this study.

The calibration method proposed by Dowling et al. (15) was used for this research. A hypothetical 4-
legged intersection was created with each approach consisting of an exclusive through lane. All lane
widths, grade, curb radii, etc. were considered to be ideal and adequate storage and discharge space
was provided. Three fixed time 2 phase signal timing plans were developed. The cycle length
consisted of 60 sec, 80 sec and 100 sec. The green time to cycle length ratio (g/C) of each phase was
set equal to 0.5. No amber time or all red time was modelled. Consequently, the green interval of
each phase represented the effective green interval. The traffic stream consisted of only passenger
cars. Cyclists, pedestrians, heavy vehicles, transit vehicles (buses), transit stops and on-street

parking were not modelled.

A total of 27 combinations (Table 1) of bx_add, bx_mult and cycle length (C.) were simulated to
predict the average and COV of SFR from VISSIM. Ten replications, each with a different random
number seed, were simulated for each combination. Two calibration objective functions were
formulated, one that minimizes the mean square error (MSE) between the model estimates and field
measurement of the mean SFR (Equation 2) and the other that minimizes the MSE of the COV of
SFR (Equation 3).

. 1 i\
min MSE, == XP =X’ 2
= ZZ( X" @
min MSE,, = % >y (et -Cf 3)
Da,m CL
Where:
MSE, = mean squared error of the SFR
MSE. = mean squared error of the COV of SFR
X = SFR obtained from VISSIM model for d™ combination of D, and
for ¢ combination of C,
X! = Average Field measurement of SFR
Cluo = Coefficient of variation of SFR obtained from VISSIM for d™ combination of

D, ., and for ¢""combination of C,

c! = Coefficient of variation of SFR from field measurements.
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The parameter values that simultaneously satisfied Equations 2 and 3 were found to be bx_add = 4

and bx_mult =3 with a regressed equation:
XP=axpC, 4)

Where:
XP = Predicted SFR (vphpl)

The regression parameters were found to be = 2083 vph and 8= -3.62 vph / sec (R* = 0.98, t-value
40.3).

Geometric and Traffic considerations

A hypothetical signalized 4-leg intersection was simulated. Each approach consisted of an exclusive
left turn lane, exclusive through lane and a shared through and right turn lane. All lane widths, grade,
curb radii, etc. were considered to be ideal with no on-street parking and adequate storage and
discharge space. The intersection geometry was developed using links and connectors and modelled
in VISSIM. The intersection approach was controlled by a two-phase signal timing plan with a cycle
length of 80s; 36s effective green for the main street approach; 36s effective green for the cross street
phase; and 4 seconds of inter green between each phase. Right-turn on red was not permitted.
Turning movement proportions were determined for each traffic demand scenario to control for the
the v/c ratio of each movement (as defined in Table 2). Variations arising from day-to-day variability
of the peak hour volume (16) were not considered. The intersection is assumed to not be coordinated

with any upstream or downstream signals.

Transit Operations

A bus route on the main street approach was created. However, in order to avoid the influence of
stopped buses on the general traffic, no bus stops were modelled. Rather, the simulation was
structured to isolate the influence of TSP operation on delays to buses, Main Street vehicles and cross

street vehicles.

The time within the cycle at which the transit vehicle arrives at the intersection has a large influence
on the performance of TSP. Many factors influence transit vehicle arrival time, including level of
congestion, degree of signal coordination, distance to upstream signalized intersection, number of
bus stops between the upstream and current signalized intersection and passenger activity at these

stops.
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Each simulation modelled 60 minutes of operation in which 12 buses, with an average headway of 5
minutes were modelled. In order to avoid biasing the analysis, we have assumed that bus arrival
times during the cycle are random, and therefore buses are equally likely to arrive at any time in the
cycle. To achieve this, bus headways were defined as 5 minutes plus an offset of 4 seconds where 4
was selected to ensure bus arrivals at the bus check in detector were spread uniformly throughout the
cycle. In these simulations, a 60 second cycle was used, and therefore 4 was equal to 5 seconds

(60/12). The resulting bus arrival times with respect to the signal cycle is illustrated in Figure 4.

Modelling TSP within VISSIM

The optional add-on-module Vehicle Actuated Programming (VAP) of VISSIM version 4.3 was used
to simulate the phase based transit actuated signal controls. The control logic is created in a text file
using a VAP language. During the VISSIM simulation runs, the VAP interprets the control logic
commands and creates signal control commands for the VISSIM network. At same time, the transit
detector variables reflecting the current traffic situation are retrieved from the simulation and

processed in the logic (10).

The logic codes were created considering Red Truncation and Green Extension recalls for four

different cycle recovery algorithms. The main features of the logic are:
e Buses are detected 140 m upstream of the signal stop line

e When a Red Truncation call is received, the green signal is returned to the prioritized

approach as quickly as possible.

e Red truncation calls are granted if the bus is detected while traffic on the cross street

approach is being served.

Several different TSP response cases can be identified and differentiated on the basis of when the call

for the priority is received. These cases are illustrated in Figure 5 and defined mathematically below.
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Case | Criteria (Bus Detection Time) Termination Time
1 | 0<t<(9, +As+AR + A, + AR
(g A A) tr — max gmm A A
t+1;
2 | t>(g,, +A,+AR,) and t {t
. = max
t<min A, +AR, +0, —t; t+t;
g, + A +AR,
3 (A +AR, +9, +A +AR —ty+t, | t= (9, + A, +AR,)
t>min
g, + A + AR,
and
t<(A,+AR, +g, + A +AR,)

Where:
A, =  Amber interval duration for Main Street (seconds)
AR, = All red interval duration for Main Street (seconds)
A = Amber interval duration for Cross Street (seconds)
AR, = All red interval duration for Cross Street (seconds)
Ja = Normal green interval duration for Main Street (seconds)
g, = Normal green interval duration for Cross Street (seconds)
i = Minimum green time for approach (seconds)
t = Time call for priority is received by controller (seconds) measured from the start
of Ap
t, = Time for bus to travel from detector to stop line in the absence of any queues
(seconds)
t, = Time required to serve existing queue on Main Street at beginning of green
(seconds)
t, = Time at which cross street green is terminated as a result of TSP (seconds)
t; = Bus travel time minus intergreen time and time required to serve queue

t; =t, - A — AR, —t,

The logic was further subject to the following constraints:
e All minimum green times are served for each phase.
e Cycle length is preserved in order to maintain coordination with adjacent intersections.
o No Phase skipping is allowed while a transition is made to and from a TSP phase.
Four signal control strategies were modelled, namely:

1. No TSP (i.e. fixed time with no cycle recovery algorithm)
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2. RT TSP with a no compensation cycle recovery algorithm
3. RT TSP with the proposed compensation cycle recovery algorithm
4. GE TSP with a no compensation cycle recovery algorithm

For the simulations conducted within this study the following parameters values were used: Cycle

length (C) = 80 seconds, g, = g, = 36 seconds, A, = AR, = A, = AR, =2 seconds, t; = 14

seconds and tq =10 seconds.

For each signal control strategy 12 traffic demand scenarios were developed (Table 3). For each
traffic demand scenario and each signal control strategy, 10 simulation runs were conducted to
account for the stochastic nature of the traffic simulation model. It should be noted that though this
approach is consistent with most other published modelling studies it does not explicitly reflect day-
to-day variability of peak hour volumes (1717). For each run the delay and queue statistics were

obtained for the Main Street and Cross Street.

Each simulation run consisted of an initial 5 minute warm up period during which data were not
recorded, followed by 60 minutes of recording time. An additional 30 minutes were simulated to
ensure that all generated vehicles were able to complete their trips and have their travel times

included within the recorded statistics.

IMPACT OF RECOVERY ALGORITHM ON PERFORMANCE

The main goal of this study was to quantify the sensitivity of RT TSP performance to the recovery
algorithm and to propose and evaluate a recovery algorithm that compensates the cross street for lost
green time. The impact of TSP was measured as:

pP= (M TSP — M NOTSP) (5)
M NOTSP
Where
P = Percent change in performance measure due to selected cycle recovery algorithm
M. = Performance measure with selected cycle recovery algorithm
Myorse = Performance measure without transit signal priority

We examined 3 relevant performance measures: Cross Street mean vehicle delay; Main street mean

bus delay; and intersection mean person delay.



Abdy & Hellinga 14

Results from the simulation runs in terms of the change in cross street average vehicle delay
(computed using Equation 5) are illustrated in Figure 6 for the three TSP strategies. It is evident from
Figure 6 that there is considerable variability in the performance of the TSP strategies across the
different simulation runs, even within a specific traffic demand scenario. This variability confounds
the ability to observe trends within the data. Consequently Figure 7, Figure 9, and Figure 10 illustrate
the mean change in performance measure, computed using Equation 6, for the cross street delay, bus

delay, and intersection person delay respectively.

- 1 10
P==—>'P 6
0P (6)
Where:
P = Average percent change in performance measure due to selected cycle recovery
algorithm
P = Percent change in performance measure as computed using Equation 5.

Results from the use of Equations 5 and 6 that are positive imply that the associated TSP strategy has
increased delays relative to the no TSP case (i.e. net dis-benefit). Values that are negative imply that

the associated TSP strategy has decreased delays (i.e. provided net benefits).

On the basis of these results, we wish to answer the following questions for each performance

measure:

1. Is the proposed compensation cycle recovery algorithm statistically superior to the no

compensation cycle recovery algorithm for all performance measures?

2. How does the performance of RT TSP strategy (with a no compensation cycle recovery
algorithm and with the proposed compensation cycle recovery algorithm) compare with the
GE TSP strategy?

3. How TSP performance is influenced by the Main Street and Cross Street v/c ratios?

The answers to above questions are investigated in following sections.

Impact on Cross Street Mean Vehicle Delay

Figure 7 shows the impact of TSP strategy on the cross street mean vehicle delay. As expected, in
general, the provision of TSP to buses on the main street increases delays to vehicles on the cross
street. The magnitude however, was greatly influenced by the strategy used to provide priority. The

RT with No Compensation algorithm caused cross street average vehicle delay to increase from 16%
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to 105% and a strong correlation is observed (Figure 8) between cross street v/c ratio and the
magnitude of the increase in delay. In contrast, RT with the proposed Compensation cycle recovery
algorithm caused cross street average vehicle delay to increase by only 0.4% to 6.3% and was much
less sensitive to the cross street v/c ratio. The results represent a reduction in cross street delays of
between 87% and 100%.

The results from red truncation were also compared with a standard GE strategy. In this approach the
extension is made to the prioritized approach with out giving compensation to the non prioritized
approach. The results obtained in this study are in agreement with the common consensus expressed
in the literature that red truncation with out compensation results in poorer performance than does the
Green extension strategy (2,5). However, the results also show that the performance of red truncation
on cross street delay is greatly dependent on the recovery algorithm that has been implemented to
compensate the non prioritized approach. The results in Figure 8 show that in terms of cross street
vehicle delays, the proposed RT Compensation cycle recovery algorithm performs better even than

the green extension TSP strategy.

The above results are not entirely unexpected. Providing compensation to the cross street for green
time lost when granting TSP would be expected to reduce cross street vehicle delays, especially
when the cross street v/c ratio is large. However, providing compensation is also expected to create
additional delays for the main street. Consequently, impacts on the main street must also be

considered in the evaluation.

Impact on Bus Delay

The impact of cycle recovery algorithm on the bus delay is depicted in Figure 9. As expected, the
simulation results indicate that the provision of transit signal priority is generally beneficial to buses
for all recovery algorithms but that the magnitude of the benefit varies substantially between
different algorithms and with the traffic demand. Highest reduction in bus delays were observed with
a RT with no compensation cycle recovery algorithm. The bus delay reductions were up to 46.5%.
As expected bus delays with a RT with compensation cycle recovery algorithm resulted in lower bus
reduction than that for RT with No Compensation cycle recovery algorithm. The reduction in bus
delays using a RT with compensating cycle recovery algorithm were comparable to GE no

compensation cycle recovery algorithm, especially at main street v/c ratio 0.9 and 0.95.
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Impact on Intersection Person Delay
Intersection delay (Figure 10) considers impacts of TSP on both cross street and main street
simultaneously. General purpose vehicles are assumed to have an average occupancy of 1.1

persons/vehicle. Buses are assumed to have an average occupancy of 20 persons/bus.

The results suggest that RT with Compensation performs better then RT with No Compensation
when cross street v/c ratio is relatively large. Furthermore, RT with Compensation appears to be
much less sensitive than RT with No Compensation strategy to the level of traffic demands on the

main and cross streets.

It is clear from these results that any study that has been carried out using a non compensation RT
recovery algorithm and has compared the results with a standard Green extension recovery algorithm

can be misleading.

Impact of cycle recovery algorithms on RT TSP performance

The relative performance of the two cycle recovery algorithms was assessed statistically by
conducting “two factor with replication” ANOVA tests on the simulation results. The purpose of the
ANOVA was to determine whether or not the performance of RT is significantly impacted by traffic
demands (i.e. v/c ratio) and/or cycle recovery algorithm. The two factors in each test were: (1) the v/c
ratio (12 levels as defined in Table 3), and (2) TSP strategy. Each ANOVA test was conducted at the
95% level of confidence and the significance of the main effects and interaction effects were tested.
Two sets of ANOVA tests were conducted for each of the three performance measures. The first set
of tests compared the performance of the proposed RT Compensation cycle recovery algorithm with
the RT No Compensation recovery algorithm. The second set of tests compared the proposed RT

Compensation cycle recovery algorithm with the GE No Compensation algorithm.
Table 4 summarizes the results of the tests. The test results indicate that:

e Consistent with observations made on the basis of Figure 8, traffic demand level (i.e. volume
to capacity ratio) has a significant influence on the impact of TSP for all three performance

measures.

e The performance of the proposed Compensation cycle recovery algorithm was statistically
different from the performance of the No Compensation cycle recovery algorithm when

measured in terms of cross street delay and bus delay. There was no evidence to conclude
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these two algorithms perform differently when evaluated on the basis of intersection person

delay.

e The performance of the proposed Compensation cycle recovery algorithm was statistically

different from the performance of the GE algorithm for all three performance measures.

It is possible to determine which TSP strategy maximizes the reduction in intersection person delay
by considering the results from all traffic demand levels. However, given the influence that main
street and cross street v/c ratio have on TSP performance (as determined from the ANOVA tests), it
is appropriate to identify the best TSP strategy for each traffic demand level separately. A paired two
sample t-test was used to compare the mean change in intersection person delay for each of the 12
demand levels (tests were conducted at the 95% confidence level implying means are statistically
different when the p-value is < 5%). Table 5 shows the results for three sets of comparisons (RT No
Compensation vs. RT with Compensation; RT No Compensation vs. GE; and RT Compensation vs.
GE) for each v/c ratio. From the t-test results it is possible to determine the TSP strategy that is
statistically superior (i.e. has greatest reduction in intersection person delay compared with the no
TSP case). The GE strategy is statistically superior to the RT No Compensation strategy for six of
the 12 v/c ratios. Coincidently, the GE strategy is statistically superior also to the RT Compensation
strategy for six of the 12 v/c ratios. These results seem to support the general consensus expressed in
the literature that the GE strategy is superior to the RT strategy. However, further inspection reveals
that the superiority of the GE strategy to the two RT strategies is not consistent across the 12 v/c
ratios. For example, the GE strategy is superior to the RT Compensation strategy for the first six v/c
ratios. However, there is insufficient evidence to conclude that the GE strategy is superior to the RT

No Compensation strategy for demands scenarios 1, 4, and 5.

The last column in Table 5 identifies the statistically superior strategy when considering all three
strategies simultaneously. Cell entries of “same” indicate that there is not sufficient evidence to
conclude that one strategy is statistically superior to the others. The GE strategy is identified as the
superior TSP strategy for only three of the 12 v/c ratios examined. These results suggest (a) that the
performance superiority of the GE strategy is in large part a result of the lack of a suitable
compensation cycle recovery algorithm; and (b) that the implementation of RT with even a relatively
naive compensating cycle recovery algorithm can substantially narrow the performance deficit
between RT and GE TSP strategies.
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CONCLUSIONS AND RECOMMENDATIONS

In general, the provision of RT TSP for buses on the main street increases delays to vehicles on the
cross street. However, the magnitude of this impact on cross street vehicle delay is greatly influenced
by the cycle recovery algorithm. A cycle recovery algorithm that provides compensation to the cross
street for green time lost as a result of granting TSP can reduce the increase in cross street vehicle
delays. Even the relatively naive compensating cycle recovery algorithm tested in this study achieved
an average reduction in the increase of cross street vehicle delays of 93% as compared to a no

compensation RT cycle recovery algorithm.

The performance advantages of GE (as measured in terms of intersection person delay) over RT are
significantly reduced if RT is implemented with a compensating cycle recovery algorithm under

suitable traffic conditions.

It is recommended that a compensation cycle recover algorithm be used with RT TSP
implementation when the v/c ratio on the cross street approach is equal to or greater than the v/c ratio

on the prioritized approach.

Additional research should focus on quantifying the impacts of vehicle arrival distributions (i.e.
effect of coordination and platooning) on GE and RT TSP performance and on developing an
analytical tool that can be used to quantify the expected benefits of TSP implementations as a

function of TSP strategy, traffic conditions, signal controls, and geometry.
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Table 1: Calibration of VISSIM parameters to achieve desired saturation flow rates

SFR(X")

D.m X Pregression parameters _

X 21| Cycle Length (C,)
alM| « ;i R? | t(28)! 60 | 80 | 100
3| 31]2203.7 | -3.44 | 0.960 | -26.1 | 1928 | 1997 | 1929 | 1860
4| 3 (2083.2|-3.62|0.983 | -40.3 | 1794 | 1866 | 1794 | 1722
5] 3]2020.3|-4.16 | 0963 | -26.8 | 1685 | 1771 | 1688 | 1604
3|4 ]21219|-3.33|0.970 | -30.0 | 1856 | 1922 | 1856 | 1789
4| 4 |2016.7 | -3.59 | 0.982 | -39.0 | 1729 | 1801 | 1730 | 1658
5|4 119148 |-357 0979 | -36.3 | 1629 | 1701 | 1629 | 1558
3|151]20879|-3.65|0.978 | -35.7 | 1796 | 1869 | 1796 | 1723
4|5 |20085|-4.04|0971| -30.5 | 1686 | 1766 | 1686 | 1605
55 ]1881.7|-3.71|0.984 | -41.4 | 1585 | 1659 | 1585 | 1511

Notes: [1] Significance of /3 tested at 95% confidence level, t s ,5 = 2.16037 for two tailed t-test.

[2] X is average SFR based on 30 runs resulting from three C, levels and ten replications n.
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Table 2: Turning movement proportion for each traffic demand scenario

v/c Right | Through Left
0.1 27% 62% 12%
0.2 27% 63% 10%
0.3 28% 65% 7%
0.4 28% 66% 6%
0.5 29% 67% 4%
0.6 29% 68% 3%
0.7 29% 69% 2%
0.8 29% 69% 2%
0.9 30% 69% 1%
1.0 30% 69% 1%
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Table 3: Design of Experiment

Traffic . Number
Main Cross | Number of of
Demand L Total Runs

Scenario v/c v/c replications Recoyery
Algorithm

1 0.7 0.5 10 4 40

2 0.7 0.6 10 4 40

3 0.7 0.7 10 4 40

4 0.8 0.6 10 4 40

5 0.8 0.7 10 4 40

6 0.8 0.8 10 4 40

7 0.9 0.7 10 4 40

8 0.9 0.8 10 4 40

9 0.9 0.9 10 4 40

10 0.95 0.8 10 4 40

11 0.95 0.9 10 4 40

12 0.95 0.95 10 4 40

Grand total 480
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Table 4: ANOVA Test Results

RT No Compensation vs
RT Compensation

RT Compensation vs GE

Performance
Measure Factor F Value Outcome F Value Outcome
v/c ratios 9.9 D 2.1 D
Cross Street
Vehicle Recoyery
Dela Algorithm 214.6 D 22.0 D
Y Interaction 9.6 D 1.2 S
v/c ratios 7.9 D 5.7 D
Recovery
Bus Delay | Ajgorithm 43.1 D 36.6 D
Interaction 45 D 4.6 D
. v/c ratios 4.6 D 1.3 S
Intersection
Person Recoyery
Dela Algorithm 3.1 S 9.4 D
y Interaction 4.5 D 0.7 S

Note: S = There is no difference in Recovery Algorithm performance

D = There is a significant difference in Recovery Algorithm performance
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Table 5: t-test Results

25

Traffic Demand

Average Change in Inter.

t-test Results

(vic) Person Delay (P ) (p-value) Best
RT No RT | GENo | RTNoCompvs. | RTNoComp | RT Comp | Strategy

# | Main | Cross | Comp. | Comp. | Comp. RT Comp vs. GE
1] 07 0.5 0.0% 58% | -1.7% 0.02% 22.42%
2 | 07 0.6 4.2% 5.5% 0.0% 27.72%
3] 07 0.7 7.1% 4.7% 1.1% 18.80%
41 08 0.6 -2.7% 3.0% | -3.3% 0.28% 76.71%
5] 08 0.7 1.4% 3.6% | -1.3% 25.57% 14.82%
6 | 08 0.8 17.4% | 3.3% | -0.6% 3.77%
7 1.19% 9.10%

0.9 0.7 -7.3% | 10.6% | 3.6%
8 | 09 0.8 5.7% 4.7% 2.0% 89.48% 62.06% 47.01% same
9| 09 0.9 27.5% | 4.2% | 10.2% 4.02% 13.68% 44.20% same
10| 095 | 0.8 | -12.0% | 32% | -6.2% 2.15% 17.28% 8.63% same
111 095 | 0.9 30.9% | 9.2% 3.2% 6.14% 21.10% same
121 095 | 0.95 | 33.3% | 3.9% 3.4% 0.02% 94.76% same

Shaded cells indicate v/c ratios for which GE strategy is better than the comparison strategy.
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Figure 1: Standard GE and RT TSP No Compensation Cycle Recovery Algorithm.
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Figure 2: D/D/1 Queuing diagram for the No Compensation RT Cycle Recovery Algorithm.
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Figure 3: D/D/1 Queuing diagram for the Compensation RT Cycle Recovery Algorithm.
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Figure 6: Simulation results (Individual runs and mean values for Cross Street Vehicle Delay).
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